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Introduction

Let V be a simple vertex operator algebra satisfying certain
regularity conditions with irreducible modules V.,. Define

Fy(m) =trlv, qLO_C/24 .

Then F =) F,e" is a modular form for the Weil representation
of SLQ(Z)

Borcherds' singular theta correspondence maps modular forms
for the Weil representation of SL»(Z) to automorphic forms on
orthogonal groups.
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The Weil representation

Let D be a discriminant form of even signature with quadratic
form « — 72 /2. The Weil representation of I = SL»(Z) on C[D]
is defined by

pp(T)e’ = e(—’yz/2) e’

_ efsign(D)/5) ;
S e'y = e e
pp(S) i [; (vB8)

where § = (2 _01) and T = (é i) are the standard generators
of I'.
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The Weil representation

Theorem

Let M = (f:fj) € I. Then

pp(M)e" = V'D LY e(as/2)el-ba)e(—bor? 2)e

ﬁEDC*

with £ = e(sign(D)/4) [T &p.
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The Weil representation

Let F(7) = >_,ep Fy(7)e” be a holomorphic function on the
upper halfplane with values in C[D] and k an integer. Then F is
a modular form for pp of weight k if

F(MT) = (cT + d)ka(M)F(T)

for all M = (i 2) €[ and F is meromorphic at ico.
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The Weil representation

Example

Let L be a positive definite even lattice of even rank 2k. For

v € Dy define
2
0,(7) = Z q* /2.
acy+L

Then
0(r) = 0y(r)e"

~v€D,

is a modular form for the dual Weil representation pp, of weight k
which is holomorphic at joco.
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Induction from congruence subgroups

Let D be a discriminant form of even signature. The level of D is
the smallest positive integer k such that ky2/2 =0 mod 1 for all
v € D. Suppose the level of D divides N. Let M = (25) € [o(N).

Then the formula for pp gives

pp(M)e? = <‘g> e((a— 1) oddity(D)/8) e(—bd~?/2) e™ .
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Induction from congruence subgroups

Theorem

Let D be a discriminant form of even signature and level dividing
N.

Let f be a scalar valued modular form for 'g(N) of weight k and
character xp and let H be an isotropic subset of D which is
invariant under (Z/NZ)* as a set. Then

Fron,fH = Z ZﬂMPD(M_l)eW

Melo(N)\I veH

is modular form for pp of weight k.

Nils Scheithauer Modular forms for the Weil representation



Induction from congruence subgroups

Let f be a scalar valued modular form on I';(N) of weight k and
character x. Then

Fromyfy = Z flm po(M1)e?
MeT (M\F

is modular form for pp of weight k.

Every modular form for Weil representation can be obtained as a
linear combination of liftings from ';1(N).
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Induction from congruence subgroups

The Fourier expansions of the inductions can be calculated
explicitly using the above formula for Weil representation.
For T'1(N) we find

Theorem

The function Fr () r~
cusps of '1(N) where

can be written as a sum > F; over the

Fo= e Y2 S - a)22)e(bin)

\/W peay+De*
e(—ab72/2) tgmt,ju{e“ + (—1)ke(sign(D)/4)e_"}

if N > 2 and s is regular and similarly in the other cases.
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Induction from isotropic subgroups

Let D be a discriminant form of even signature. Let H be an
isotropic subgroup of D and H™ the orthogonal complement of
H in D. Then Dy = H*/H is a discriminant form. Let

Fp, = Z'yGDH Fp,~€" be a modular form for pp,,. Define

F = E FDHW'FH el.
~yeH+

Then

Theorem

F is a modular form for pp.
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Discriminant forms of squarefree level

Theorem

Let D be a discriminant form of squarefree level N and

F= ZveD F,e” a modular form for pp which is invariant under
Aut(D). Then the complex vector space W spanned by the
components F.,, v € D is generated by the functions Fo|p,
Merl.
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Discriminant forms of squarefree level

Theorem

Let D be a discriminant form of squarefree level N and I, the set
of isotropic elements of order k. Let F =3, Fye” be a modular
form for pp which is invariant under Aut(D). Let N be the
product over the primes with nonvanishing I,. For k|Ng define

Fi = F, where «y is any element in /. Then the functions Fj span
the subspace Wy of W with T-eigenvalue 0. Define

o W — W
f +—— 0-component of Fr ) fo-

Nils Scheithauer Modular forms for the Weil representation



Discriminant forms of squarefree level

Then
O(Fi) =Y aiF;
JINR
with N D.|
djk = D] |1l Z CC :
cl(N/j,N/k)

The matrix A = (ajx) has determinant

N 7 (NR) gl \ "M D
det(A) = <|D|> < > hj’) I 1l 1 u‘".

d|N/Ng diNg  d|Ng

In particular ® is invertible.
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Discriminant forms of squarefree level

Corollary

Let D be a discriminant form of squarefree level N and F a
modular form for pp which is invariant under Aut(D). Then

F = Fry(ny,r,0 for a suitable modular form on o(N) with
character xp.
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Applications

1. Let N be the Niemeier lattice with root system Eg’ and g be a
permutation of the three Eg-components of order 3. Then
N8 = \/3Eg and N8+ = A, @ Eg. The theta function Opner defines
a modular form for the discriminant form of N&. This function is
invariant under Aut(/V&) because the centralizer of g in Aut(N)
induces the full automorphism group of N&. Let L = N8 & (2 3).
Then Opg. induces a modular form on L. Denote the quotient of
this form by the invariant 3A by Fy _ /3a. Define ng(1) = n(37)8.
Then

F=Foei 30+ 3 Froo./m0

is @ modular form for the Weil representation of L @ Il 1 with
nonnegative integral coefficients, reflective poles and [Fp](0) = 8.
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Applications

The theta lift of F has singular weight and is given by

e((p. 2) J] (1 - el(a, )t/

acl'+
= Z det(w) e((wp, 2)) H (1 — e((3nwp, Z)))B'
wew n>0

This is the denominator identity of a generalized Kac-Moody
algebra whose real simple roots are the simple roots of W and
imaginary simple roots are the positive multiples of 3p with
multiplicity 8.
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Applications

2. Let N be the Niemeier lattice with root system DZ,. Define

g € Aut(N) by g(x,y) = (y,x). Then N& = N&L = \/2D}. The
theta function 0p,1 defines a modular form for the discriminant
form of N&. This function is again invariant under Aut(/¢)
because C(g) induces Aut(N&). The lattice N8 contains a sub-
lattice K = /2Dy of genus Ih20(2;,'%4,2). Then H = N&/K is
an isotropic subgroup of Dk. The function 0. /2A induces a
modular form F@NgL/ZA for the Weil representation of K. Define

ng(T) = n(27)*? and

1 1
F=Fg . 20+ 35 Fro@)1/mg,0 = 7 Fro@)1/mgH-
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Applications

The elements of norm 1/2 mod 1 in Dk decompose into 3 orbits
under Aut(K) of length 132,1848,132. The components of F are
given by

Fo =g+ 12+ 300 + 5792¢2 + 841864° + 949920q" + ...
and
F, = 12 + 288q + 5792q> -+ 840964° + 949920¢" + . ..
if v € D2\{0},
F, = 4 +224q 4 5344¢° + 81792¢° + 939232q¢* + . ..

if ¥?/2=0mod 1 and v & D2,
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Applications

Fy=q /% +44q"? +1242¢%% + 22216¢°/% + . ..
if ¥2/2 =1/2 mod 1 and v is in one of the orbits of length 132,

F, = 32¢%/2 +1152¢%/2 + 216964°/% + 284928q"/2 + . ..
if ¥2/2 =1/2 mod 1 and 7 is in the orbit of length 1848,
F, = q /% +90¢>* + 2535¢7/* + 42614™/* + ...
if ¥2/2 =1/4 mod 1 and
F, = 12¢%* 4+ 520¢°/* 4 10908¢°/* + 1539604'%/* + . ..

if ¥2/2 =3/4 mod 1.
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Applications

Let L=K®Ill;1 and M =L@ Ill11. Then F induces a modular
form for Dys. The theta lift W of F is a holomorphic automorpic
form of singular weight. The level one expansion of W is given by

e((p.2)) [[ (1 - el(a, 2)))lFetdo/?)

ael’t
= Y det(w)e((wp, 2)) [] (1 - e((2nwp, 2)))*2.
wew n>0

This is the denominator identity of a generalized Kac-Moody
algebra whose simple roots and multiplicities are explicitly known.
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Applications

3. Let A be the Leech lattice and g € Aut(A) of cycle shape 3.21.
Define

L=NaVT(3)
and M =L@ ll11. Then M has genus /142(372971773). Let

N3 =N NNL > (21 @ A,

Let ng(7) = n(37)n(217) and h(1) = ng(7/3).
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Applications

Then

_ 1 1
F= 3 Fro(63)71/77g70 + 1 Fr0(63)70/\g,3/77g37D21

1
+tats D>, Friesima
YEN+D?

is a modular form for the Weil representation of M’/M with
nonnegative integral coefficients, reflective poles and [Fp](0) = 2.
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Applications

The theta lift of F has singular weight and is given by

e((p,2)) T[] (1- e((av, 2)))Ferd=o%/2)

a€el’t

Z det(w) ng((wp, 2)).

weW

This is the denominator identity of a generalized Kac-Moody
algebra whose simple roots and multiplicities are explicitly known.
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Applications

4. The fake monster algebra G is a generalized Kac-Moody algebra
acted on by Coyp.

Borcherds’ conjecture (1995)

The twisted denominator identities of G under Coq are
automorphic forms of singular weight on orthogonal groups.

The above methods can be used to give a complete proof of this
conjecture.
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